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Besides tunneling in static potential landscapes, for example, the Wentzel-Kramers-Brillouin (WKB)
approach is a powerful nonperturbative approximation tool to study particle creation due to time-dependent
background fields, such as cosmological particle production or the Sauter-Schwinger effect, i.e., electron-
positron pair creation in a strong electric field. However, our understanding of particle creation processes in
background fields depending on both space and time is rather incomplete. In order to venture into this
direction, we propose a generalization of the WKB method to truly spacetime-dependent fields and apply it
to the case of a spacetime-dependent mass.
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I. INTRODUCTION

Particle creation out of the vacuum due to extreme
external influences is an intriguing effect and a fundamental
prediction of quantum field theory. In the following, we
focus on electron-positron pair production in quantum
electrodynamics. There are several possibilities for pair-
producing external fields. For example, in the Sauter-
Schwinger effect [1–3], particles are created due to a
strong electric field. This is even possible for slowly
varying electric fields (as long as they are strong enough).
Note that this process is different from pair creation in the
(perturbative) multiphoton regime which requires suffi-
ciently fast varying electromagnetic fields; see, e.g., [4].
As another example, cosmological pair production [5,6]
occurs in an expanding or contracting universe.
So far, electron-positron pair production has been

verified experimentally only in the perturbative (multi-
photon) regime [4]. Nonperturbative pair production due to
an external field is far more difficult to observe in nature
and also not nearly as well understood on the theoretical
side. Although these effects were first considered more than
half a century ago, our understanding of these effects is still
far from complete. This is manifest in the fact that there
is still very limited knowledge about the influence of the
external field’s spacetime dependence. Besides numerical

simulations (see, e.g., [7–15]), several analytical methods
have been used for computing the pair production prob-
ability, such as the Wentzel-Kramers-Brillouin (WKB)
method [16–19] or the worldline instanton method [20].
However, most of the studies so far were limited to fields
that depend on a single coordinate, e.g., time [16–24], a
spatial coordinate [20,22,25] or a light-cone coordinate
[26–30]; see also [31]. Via the worldline instanton method,
there have been a few works on truly spacetime-dependent
fields, but these were limited to special cases [32–34] or a
fully numerical treatment; see, e.g., [35] (see also [36] for a
work using the Wigner formalism). Regarding the WKB
approach, there have been even less studies for background
fields depending on both space and time.
In this article, we present a WKB method based on the

eikonal (or Hamilton-Jacobi) equation that promises to
overcome this fundamental restriction (see [37] for a
previous approach to electron propagation based on the
eikonal equation). For the sake of simplicity, we consider
the Dirac equation in 1þ 1 dimensions. However, we
believe that the method can be generalized to higher
dimensions in a straightforward way as long as the external
field only depends on time and a single spatial coordinate.
As an important example, we study electron-positron pair
creation due to a spacetime-dependent mass mðt; xÞ in the
Dirac equation. As one possible motivation, we note that a
curved spacetime metric such as in cosmological particle
production can be mapped to a spacetime-dependent mass
in the Dirac equation [38].
The article is organized as follows: We start by reviewing

the conventional WKB method for the time-dependent
Dirac equation and use a specific time-dependent mass as
an example in Sec. II. In Sec. III, we expand solutions of
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the Dirac equation using solutions of the eikonal (or
Hamilton-Jacobi) equation, giving two linear coupled
partial differential equations. In Sec. IV we show that
these equations reduce to known results if the electric field
(or mass) is either purely time dependent or purely space
dependent. Problems that occur while solving the eikonal
equation with a truly spacetime-dependent field are dis-
cussed in Sec. V. The case of a spacetime-dependent
mass is considered in Sec. VI. We calculate approximative
solutions to the equations mentioned above for a spacetime-
dependent mass with a weak space dependence in
Sec. VII.

II. WKB FORMALISM

Let us start by briefly reviewing the standard derivation
of the WKB formalism for purely time-dependent fields in
1þ 1 dimensions (see, e.g., [18,19] for comparison). As we
are interested in pair production due to a spacetime-
dependent mass (or scalar potential) later on, we consider
the case of a time-dependent mass and a time-dependent
electric field in 1þ 1 dimensions.
We start with the covariant Dirac equation (ℏ ¼ c ¼ 1)

½iγμð∂μ þ iqAμÞ −m�ψ ¼ 0; ð1Þ

where Aμ are the components of the electromagnetic
potential and γμ are the gamma matrices satisfying the
Clifford algebra’s anticommutation relation

fγμ; γνg ¼ 2ημν: ð2Þ

Now consider the Hamiltonian form of the Dirac equation
in 1þ 1 dimensions in temporal gauge A0 ¼ 0, A1 ¼ AðtÞ,

i∂tψðt; xÞ ¼ f−iγ0γ1½∂x þ iqAðtÞ� þ γ0mðtÞgψðt; xÞ: ð3Þ

After expanding ψðt; xÞ into Fourier modes ψpðtÞ, we get

i∂tψpðtÞ ¼ fγ0γ1½pþ qAðtÞ� þ γ0mðtÞgψpðtÞ
¼ HpðtÞψpðtÞ: ð4Þ

Because H2
pðtÞ ¼ m2ðtÞ þ ½pþ qAðtÞ�2 ¼ Ω2

pðtÞ, the self-

adjoint operator HpðtÞ ¼ H†
pðtÞ has the instantaneous

eigenvectors u�ðp; tÞ,

HpðtÞu�ðp; tÞ ¼ �ΩpðtÞu�ðp; tÞ; ð5Þ

which are orthonormal, i.e., u†�u� ¼ 1 and u†�u∓ ¼ 0.
As usual, this normalization prescription still leaves the
phases of the spinors free to choose. Additionally, one can
show that

_u†þu− ¼ ðu†− _uþÞ� ¼
1

2Ωp
u†þ _Hpu−; _u†�u� ¼ 0: ð6Þ

We expand ψpðtÞ in terms of these eigenvectors,

ψpðtÞ ¼ αðp; tÞuþðp; tÞe−iφpðtÞ þ βðp; tÞu−ðp; tÞeiφpðtÞ

ð7Þ

with the time-dependent phase (eikonal)

φpðtÞ ¼
Z

t

−∞
dt0Ωpðt0Þ: ð8Þ

This expansion (7) reflects the main idea of the WKB
approach, i.e., the separation of the rapid oscillation of
the phases expf�iφpðtÞg from the slow variation of the
background in u�ðp; tÞ as well as αðp; tÞ and βðp; tÞ.
Upon inserting this expansion into (4) and projecting

onto u�ðp; tÞ, we get two coupled ordinary differential
equations for αðp; tÞ and βðp; tÞ,

_α ¼ β

2Ωp
e2iφpu†þ _Hpu−;

_β ¼ −
α

2Ωp
e−2iφpðu†þ _Hpu−Þ�: ð9Þ

We define RðtÞ ¼ βðp; tÞ=αðp; tÞ and find a Riccati
equation

_R ¼ −
ℜðu†þ _Hpu−Þ

2Ωp
½e−2iφp þR2e2iφp �

þ iℑðu†þ _Hpu−Þ
2Ωp

½e−2iφp −R2e2iφp �: ð10Þ

Note that the exact form of the right-hand side depends on
the chosen representation and normalization of uþ and u−
due to the factor u†þ _Hpu−. Using γ0 ¼ σz and γ1 ¼ iσy and
assuming vanishing phase difference between the spinors
uþ and u−, we find

_R ¼ mqE − ðpþ qAÞ _m
2Ω2

p
½e−2iφp þR2e2iφp � ð11Þ

which for _m ¼ 0 reduces to the well-known form

_R ¼ mqE
2Ω2

p
½e−2iφp þR2e2iφp �: ð12Þ

On the other hand, for AðtÞ ¼ 0 we find

_R ¼ −
p _m
2Ω2

p
½e−2iφp þR2e2iφp �: ð13Þ
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The number of created positrons (or electrons) with
momentum p can be calculated using (see the Appendix A)

NeþðpÞ ∝ jβoutðpÞj2 ¼
jRoutj2

1þ jRoutj2
; ð14Þ

where βoutðpÞ ¼ βðp; t → ∞Þ, Rout ¼ Rðt → ∞Þ and we
have used the relation jαj2 þ jβj2 ¼ 1 in the last equality.
Under the assumption that few pairs are created, i.e.,
R ≪ 1, a linearized form of the Riccati equation (11) is
often used:

_RðtÞ ≈mqE − ðpþ qAÞ _m
2Ω2

p
e−2iφp : ð15Þ

In that case we get NeþðpÞ ∝ jRoutj2. To obtain Rout we
integrate the linearized Riccati equation (15) over all times,

Rout ≈
Z

∞

−∞
dt
mqE − ðpþ qAÞ _m

2Ω2
p

e−2iφp : ð16Þ

For symmetric electric fields Að−tÞ ¼ −AðtÞ with a con-
stant mass ( _m ¼ 0), one expects the maximum number of
created pairs for p ¼ 0, as the denominator of the integrand
is minimal in that case. On the other hand, in the case with
only a time-dependent mass [AðtÞ ¼ 0] the right-hand side
of (13) immediately reveals that RðtÞ vanishes for p ¼ 0
and so does the number of produced pairs.
Furthermore, upon deforming the integration contour

for the integral (16) in the complex plane, we see that the
integrand is exponentially suppressed in the lower half-
plane. Thus, the integral’s value is dominated by the value
of the exponential at the singularity closest to the real axis.
This singularity at t� could be a pole of the prefactor
Ωpðt�Þ ¼ 0 or a branch point or any other point where the
integrand is not analytic anymore, and thus we cannot
deform the integration contour further. Then, Rout can be
approximated as

Rout ∼ e−2iφpðt�Þ: ð17Þ

This estimate does not give the correct prefactor but only
the exponent. However, due to the linearization of the
Riccati equation, one cannot realistically expect to obtain
the prefactor from the integral (16) exactly anyway. If there
are multiple singularities that are comparably close to the
real axis, contributions from all singularities have to be
taken into account, which leads to interference effects in the
momentum spectrum [11,19,39].

A. Example: Time-dependent mass

As an example, we want to calculate the number of
produced pairs for a specific time-dependent mass as a toy
model. We use a similar functional dependence later in

Sec. VII as a spacetime-dependent mass where some of the
results derived here will be useful.
We use a mass of the form

mðtÞ ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
fðωtÞ
γ

�
2

s
ð18Þ

with fðτÞ ¼ sechτ and a dimensionless parameter γ that
controls the amplitude of the pulse. For large γ, the relative
change of mðtÞ is small, and we may use perturbation
theory to estimate the pair-creation probability (see below).
For small γ, however, the change is large, and we need
another method, such as the WKB approach.
This parameter γ also controls the adiabaticity, i.e., the

applicability of the WKB approximation. A measure for the
adiabaticity is the rate of change _m of the mass compared to
the mass itself, i.e., _m=m2, which scales with γω=m0. Thus,
the interesting region of small γ can be treated via the WKB
approach provided that ω ≪ m0.
The expression (18) is motivated by the fact that

typically the squares of mass (or potential) terms are added.
As an example, let us consider the Dirac equation in 2þ 1

dimensions where the second spatial dimension is com-
pactified, giving rise to a discrete Kaluza-Klein tower
of transversal momenta k⊥. Then, the effective masses of
the 1þ 1-dimensional Dirac equations would be m2

1D ¼
k2⊥ þm2

2D. As another example, let us consider a scalar
field ð□þm2Þϕþ V 0ðϕÞ ¼ 0 with the interaction poten-
tial VðϕÞ. Then, linearization ϕ ¼ ϕ0 þ δϕ around a given
background solution ϕ0 yields the effective mass m2

eff ¼
V 00ðϕ0Þ þm2 for the perturbation δϕ.
The parameter γ plays a role very analogous to the

Keldysh parameter γ ¼ mω=ðqEÞ for strong electric fields;
see, e.g., [40]. This analogy can be made even more
explicit by considering the form of the effective mass

meff ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hqAμqAμi=m2

q
of an electron within a laser

pulse (see [41–43]), even though the resulting pair-creation
probability should be derived by using the vector potentials
Aμ directly.
We then can approximate Rout using the linearized

Riccati equation (15),

Rout ≈ −
1

γ̃2
p
m0

Z
∞

−∞
dτ

fðτÞf0ðτÞe−2iφpðτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

h
fðτÞ
γ

i
2

r n
1þ

h
fðτÞ
γ̃

i
2
o ð19Þ

where

φp ¼ m0

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
p
m0

�
2

s Z
τ

−∞
dτ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
fðτ0Þ
γ̃

�
2

s
ð20Þ
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and

γ̃ ¼ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
p
m0

�
2

s
: ð21Þ

For fðτÞ ¼ sechτ the phase integral can be calculated
analytically, giving

φp ¼ m0

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
p
m0

�
2

s
½ϕðτÞ − ϕð−∞Þ� ð22Þ

where

ϕðτÞ ¼ 1

γ̃
arctan

�
sinh τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ̃2cosh2τ
p �

þ artanh

�
γ̃ sinh τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ̃2cosh2τ
p �

: ð23Þ

The integral for Rout is dominated by the value of the
exponent at the pole where fðτ�Þ ¼ �iγ̃,

jRoutj2 ∼ je−2iφpðτ�Þj2 ¼ e4ℑφpðτ�Þ: ð24Þ

For fðτÞ ¼ sechτ we find

τ� ¼ arcosh

�
� i
γ̃

�
¼ ln

"
1

jγ̃j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
1

γ̃2

�s #
− i

π

2
ð25Þ

and thus

jRoutj2 ∼ exp

"
−2π

m0

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
p
m0

�
2

s #
: ð26Þ

This result does not depend on γ which at first is a bit
surprising. For example, in the limit γ → ∞, mðtÞ ¼
m0 ¼ const., and thus no pairs should be produced. This
apparent inconsistency can be resolved by the observation
that our WKB approach breaks down for large enough γ,
wherewe should use perturbation theory instead (see above).
To confirm our result we computed Rout numerically

from the full Riccati equation (13). Due to the highly
oscillatory coefficients in the Riccati equation, we inte-
grated the equation using the TIDES library [44] in
conjunction with the arbitrary-precision library MPFR
[45]. To parallelize the computation, GNU Parallel
[46] has been used.
Figure 1 shows the analytical result from (26) and the

numerical result for jRoutj2 together for a specific choice of
γ and ω. Because the approximation in (26) does not
produce the correct prefactor, we assume it to be ap2.
This is motivated by the form of the integrand’s prefactor in
(16) which for E ¼ 0 is proportional to the canonical

momentum p. The constant a is then chosen to fit the
numerical data.
We find very good agreement between the analytical

estimate and the numerical calculation. Even without the
heuristically determined factor a, the analytic approxima-
tion lies within an order of magnitude of the numerical
result.
Indeed, if one plots the values of the numerical results’

peaks over different values of ω, the points fall nicely on
the curve predicted by the maximum of the exponential in
(26) (see Fig. 2). On the other hand, if we fix ω and vary γ,
the maximum of the numerical data behaves as in Fig. 3.
For small γ ≪ 1 the maximum remains constant, while for
large γ ≫ 1 the maximum seems to go like γ−4. This
behavior is due to the prefactor in (19) which goes like γ−2

FIG. 2. Plot of the logarithm of the maximum of jRoutj2 for
different values of ω and γ ¼ 0.1. The plot shows both the
numerical results and the analytical approximation from (26).

FIG. 1. Plot of the density of produced pairs jRoutj2 for the sech
mass in (18) where fðτÞ ¼ sechτ with ω ¼ 0.1m0 and γ ¼ 0.1.
The squares are numerically calculated results, while the solid
line represents the analytical estimate from (26). We used ap2 as
the prefactor of the analytical result with a ¼ 5=m2

0 chosen to fit
the height of the peaks in the numerical result; see (16).
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for large γ ≫ 1. In between these two regions the value of
the maximum fluctuates. This can be attributed to the
prefactor as well because the order of magnitude does not
change as one would expect if this behavior came from the
exponent.

III. EIKONAL FORMALISM

We now want to develop a more general procedure for
calculating the pair production probability that, in principle,
also works for spacetime-dependent fields. The main idea
of the WKB formalism as presented in the last section is to
separate fast and slow oscillations in the wave function:
The factor of exp½�iφpðtÞ� contains the fast oscillations,
while the prefactors α and β contain the slow oscillations.
We try a similar approach for spacetime-dependent fields.
First, we define two operators

M� ¼ −γμð∂μS� þ qAμÞ ¼ −γμΠ�
μ ; ð27Þ

with S� being the two independent solutions of the
relativistic eikonal (or Hamilton-Jacobi) equation,

ημνð∂μS� þ qAμÞð∂νS� þ qAνÞ ¼ ημνΠ�
μ Π�

ν ¼ m2: ð28Þ

The eikonal equation above can be obtained from classical
electrodynamics. Thus, it could be derived from the Dirac
equation (1) via inserting the WKB ansatz ψ ∼ expðiS�=ℏÞ
and only keeping the lowest-order terms in ℏ. However,
here we motivate the WKB expansion by assuming that the
mass m is the largest relevant scale in our problem, leading
to rapid oscillations of expðiS�=ℏÞ.
We use the convention that Sþ and S− correspond to

solutions with positive and negative energy, respectively,

Π�
t ¼ ∂tS� þ qA0 ¼∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð∇S� þ qAÞ2

q
: ð29Þ

Note that this eikonal equation is an immediate generali-
zation of (8). When Aμ andm are constant, the solutions S�
correspond to plane wave solutions, that is, S� ¼∓ pμxμ.
Squaring the operators M�, we get

M2
� ¼ γμγνΠ�

μ Π�
ν ¼ ημνΠ�

μ Π�
ν ¼ m2: ð30Þ

Thus, the operators M� both have the two distinct
eigenvalues �m. Let u� and v� be their respective
eigenvectors defined as follows:

Mþu� ¼ �mu�; M−v� ¼ �mv�: ð31Þ

Because the operators M� are self-adjoint in the sense that
M̄� ¼ γ0M†

�γ
0 ¼ M�, their eigenvectors are orthogonal,

ūþu− ¼ ū−uþ ¼ v̄þv− ¼ v̄−vþ ¼ 0; ð32Þ

where ū� ¼ u†�γ
0 and analogously for v̄�. We normalize

the eigenvectors as follows:

ūþuþ ¼ −ū−u− ¼ −v̄þvþ ¼ v̄−v− ¼ 1: ð33Þ

Although parts of the following derivation can be carried
out in a general manner, we want to focus on the case of
a 1þ 1-dimensional spacetime. Then it is sufficient to use
2 × 2 matrices for the gamma matrices, and the M�
will only have one eigenvector each for every eigenvalue.
We expand the spinor ψ in terms of these eigenvectors,

ψ ¼ αuþeiSþ þ βvþeiS− ; ð34Þ

which is motivated by the expansion (7) of the spinor in
the time-dependent case. There, the functions α and β are
the Bogoliubov coefficients of the transformation between
in- and out-states (see Appendix A), and therefore we
sometimes refer to them as Bogoliubov coefficients here as
well. Using the expansion (34), the Dirac equation (1)
reduces to

iγμ∂μðαuþÞeiSþ þ iγμ∂μðβvþÞeiS− ¼ 0: ð35Þ

In terms of the large-m or small-ℏ expansion mentioned
after the eikonal equation (28), the leading-order contri-
bution gives Eq. (28) for the exponent S�, while the
subleading order determines the above equation for the
Bogoliubov coefficients, compare Eq. (2) in [47].
Multiplying (35) by ūþ or v̄þ from the left, we get two

coupled partial differential equations

ūþγμ∂μαuþ ¼ −ūþγμð∂μβvþÞe−iðSþ−S−Þ;
v̄þγμ∂μβvþ ¼ −v̄þγμð∂μαuþÞeiðSþ−S−Þ: ð36Þ

FIG. 3. Log-log plot of the maximum of jRoutj2 for different
values of γ and ω ¼ 0.1m0. The plot shows both the numerical
results and a fit of the numerical data for large γ. The slope of the
fitted line is −3.91. We see the crossover from the nonperturba-
tive WKB regime (26) for small γ to the perturbative regime ∼γ−4
for large γ.
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Analogous to the Dirac convention, we choose

γ0 ¼ σz ¼
�
1 0

0 −1

�
; γ1 ¼ iσx ¼

�
0 i

i 0

�
ð37Þ

for the gamma matrices. Thus,

M� ¼
�

−Π�
t −iΠ�

x

−iΠ�
x þΠ�

t

�
ð38Þ

and the eigenvectors u� and v� can be written as

uþ ¼Nþ

�
m−Πþ

t

−iΠþ
x

�
; u− ¼Nþ

�
iΠþ

x

m−Πþ
t

�
¼ iγ0γ1uþ;

vþ ¼N−

� −iΠ−
x

mþΠ−
t

�
; v−¼N−

�
mþΠ−

t

iΠ−
x

�
¼ iγ0γ1vþ;

ð39Þ

with the normalization constants

N� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðm ∓ Π�

t Þ
p : ð40Þ

After calculating all the inner products that appear in (36),
we get the following equations for α and β:

ημνΠþ
μ ∂να −

1

2m2
ðημρηνλ − ημνηρλÞΠþ

ρ Πþ
λ ð∂μΠþ

ν Þα

¼ ime−iðSþ−S−Þ
�
κμ∂μβ þ

1

2m2
ελνερ

μκρΠ−
λ ð∂μΠ−

ν Þβ
�
;

ημνΠ−
μ ∂νβ −

1

2m2
ðημρηνλ − ημνηρλÞΠ−

ρΠ−
λ ð∂μΠ−

ν Þβ

¼ imeiðSþ−S−Þ
�
κμ∂μα −

1

2m2
ελνερ

μκρΠþ
λ ð∂μΠþ

ν Þα
�
;

ð41Þ

where

κμ ¼ NþN−

�
Πþ

x ðmþ Π−
t Þ − Π−

x ðm − Πþ
t Þ

ðm − Πþ
t Þðmþ Π−

t Þ − Πþ
x Π−

x

�
: ð42Þ

Equations (41) are completely equivalent to the Dirac
equation (1) but might offer advantages for numerical
simulations and for analytical approximations (see below).
For the purely time-dependent case, it is known that solving
the quantum kinetic equations (see, e.g., [10,36]) or the
Riccati equation (see, e.g., [16–19]) can be more efficient
numerically than the original Dirac equation. Thus, we
expect that similar advantages could apply here, especially
in cases where the functions S� are available analytically
(e.g., within suitable approximations) or can be efficiently
implemented numerically.

IV. KNOWN LIMITING CASES

We now want to show that Eqs. (41) reproduce the
correct results for both a time-dependent electric field with
a time-dependent mass and a space-dependent electric
field.

A. Time-dependent electric field and mass

We use the temporal gauge where

A0 ¼ 0; A1 ¼ AðtÞ; E ¼ _AðtÞ: ð43Þ

Then the two independent solutions of the eikonal equa-
tion (28) are given by

S� ¼ ∓φpðtÞ þ px ð44Þ

with φpðtÞ as in Sec. II. We thus find

Π�
t ¼ ∓ΩpðtÞ; Π�

x ¼ pþ qAðtÞ; ð45Þ

N� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðtÞ½mðtÞ þΩpðtÞ�

p ; κμ ¼
�
0

1

�
: ð46Þ

None of the coefficients in (41) depends on x in this case.
Thus, if we impose boundary conditions such that α and β
are constant initially (i.e., for t → −∞) then ∂xα ¼ ∂xβ ¼ 0
for all times. Equations (41) for α and β then simplify to

Ωp∂tαþ 1

2
_Ωpα ¼ −

i
2

mqE − ðpþ qAÞ _m
Ωp

βe2iφp ;

Ωp∂tβ þ
1

2
_Ωpβ ¼ i

2

mqE − ðpþ qAÞ _m
Ωp

αe−2iφp : ð47Þ

We define the ratio RðtÞ ¼ βðtÞ=αðtÞ and, using (47),
calculate its time derivative

∂tR ¼ ∂tβ

α
−R2

∂tα

β

¼ i
mqE − ðpþ qAÞ _m

2Ω2
p

½e−2iφp þR2e2iφp �; ð48Þ

which is a Riccati equation that is up to a factor of i (that can
be attributed to a different normalization for the spinors uþ
and vþ used here than for the spinors u� in Sec. II) identical
to the one in ordinary time-dependentWKB [compare (11)].

B. Space-dependent electric field

For a purely space-dependent electric field (compare
[22,25,48]) we use the gauge

A0 ¼ ϕðxÞ; A1 ¼ 0; E ¼ −ϕ0ðxÞ: ð49Þ
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In complete analogy to the time-dependent case, we find

S� ¼ −ωt� φωðxÞ; ð50Þ

with

φωðxÞ ¼
Z

x

−∞
dx0Pωðx0Þ;

PωðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ω − qϕðxÞ�2 −m2

q
: ð51Þ

Thus

Π�
t ¼ −ωþ qϕðxÞ; Π�

x ¼ �PωðxÞ; ð52Þ

N� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½m� ðω − qϕðxÞÞ�p ; κμ ¼

�−i
0

�
: ð53Þ

Again, the coefficients in the equations for α and β in (41)
are solely space dependent, and by requiring that α and β
are constant left of the barrier, i.e., for x → −∞, we find
that ∂tα ¼ ∂tβ ¼ 0 for all values of x. Then, after intro-
ducing the ratioR ¼ β=α we again find a Riccati equation,

∂xR ¼ −
mqEðxÞ
2P2

ωðxÞ
½e2iφωðxÞ þR2e−2iφωðxÞ�: ð54Þ

This case is related to the one-dimensional Schrödinger
scattering problem from nonrelativistic quantum mechan-
ics. Again the WKB expansion (34) is motivated by the
separation of the rapidly oscillating phase expfiS�g from
the rest, which is slowly varying. This assumes that the
local momentum scale PωðxÞ is much larger than all other
relevant scales, such as P2

ωðxÞ ≫ jP0
ωðxÞj or equivalently

ð∂xS�Þ2 ≫ j∂2
xS�j. Of course, this assumption breaks

down at the classical turning points where PωðxÞ ¼ 0.
Even though the above Riccati equation is, in principle,
exact, integrating it becomes problematic at those points.
Note that, in contrast to the purely time-dependent case,
these classical turning points x can be real for sub-barrier
tunneling problems. For quantum reflection above the
barrier, they are again complex.

V. CAUSTICS

If we consider a truly spacetime-dependent problem,
difficulties in solving the eikonal equation (28) may occur.
Due to the nonlinear nature of the eikonal equation, it may
not be possible to find global solutions in a classical sense;
i.e., a solution might not be differentiable everywhere. Note
that these singularities of the eikonal equation (28) do not
(necessarily) imply that the solutions of the original Dirac
equation (1) become singular. They just indicate that the
lowest-order WKB approach (34) employed here breaks
down. This is very similar to caustics in geometric (ray)
optics—e.g., the rainbow effect—where the density of light

rays shows a singularity while the full solution of the wave
equation remains perfectly regular. Another example is the
one-dimensional stationary Schrödinger scattering problem
(discussed above) where the WKB approach breaks down at
the classical turning points (indicating the onset of tunneling)
while the solutions to the original Schrödinger equation
remain perfectly regular.
We use the method of characteristics to visualize such

situations (see, e.g., [49] or many other standard textbooks
on partial differential equations for more details). Using
this method any first-order partial differential equation can
be cast as a system of ordinary differential equations by
finding certain characteristic curves along which the
solution of the partial differential equation can be integrated
easily. Afterwards, the solutions along many of those curves
can be combined into a solution surface. This essentially
amounts to going over to another set of coordinates where
one coordinate is the parameter to move along the curve and
the other coordinates number the curves.
Difficulties appear where two characteristic curves inter-

sect. At such a point the solution is not uniquely defined as
we might use the value on either one of the intersecting
characteristic curves. Many of these points form a caustic
surface.
For example, Fig. 4 shows the spacetime-dependent mass

given in (84) together with the (numerically calculated)
characteristic curves. We see that such a spacetime-
dependent mass has a focusing or defocusing effect on
the characteristic curves similar to optical lenses on light
rays. Indeed we can estimate that the onset of the caustic
surface is at time

tf ∼
γ2ω

ε2ω2
; ð55Þ

FIG. 4. Projected characteristic curves (dotted) for the
mðt; xÞ from (84) together with mðt; xÞ itself (contour) using
fðτÞ ¼ sechτ, gðχÞ ¼ sechχ, m0 ¼ 1, p ¼ 0, ω ¼ 0.8, ε ¼ 0.375
and γ ¼ 0.5.
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for p ¼ 0 and m only weakly space dependent; see
Appendix B for details.
Diagrams like Fig. 4 are well known from geometrical

optics. In fact, geometrical optics is just an approximation
to wave optics based on the eikonal equation (for optics).
That is why it is not too surprising that the above
formula (55) for p ¼ 0 is strikingly similar to the formula
for the focal length of a thin, biconvex spherical lens [50],

f ∝
L2

Dðn2 − n1Þ
; ð56Þ

where L ∼ 1=ðεωÞ, D ∼ 1=ω and n2 − n1 ∼ 1=γ2. We see
that when the spatial inhomogeneity is weak (i.e., ε is
small), the caustics occur far away from the spacetime
region in which the mass is nonconstant, i.e., where pairs
are produced. Thus, in the case of a purely time-dependent
problem no caustics occur and our solution is differentiable
everywhere [compare (44)].
In conclusion, assuming that the spacetime region of

particle creation is sufficiently localized and that the spatial
dependence is weak enough (compared to the temporal
variation), the potential problem of caustics (indicating
singular solutions of the eikonal equation) occurs far away
from the spacetime region where the particles are created
and thus does not invalidate our analysis. To cast this
statement in a more formal form, there are two options: One
option is to choose a finite final time tout which is large
enough such that it occurs after all pair-creation processes
have taken place, but small enough such that it still occurs
before any caustics appear. As another option, one could
apply a mild deformation of the mass function mðt; xÞ in
this time window which is so slow that the generated pair
creation (i.e., mixing of positive and negative frequencies)
can be neglected, but it undoes the focusing or defocusing
effects and thus avoids caustics.

VI. SPACETIME-DEPENDENT MASS

We now turn to a truly spacetime-dependent problem,
namely that of a spacetime-dependent massmðt; xÞ with no
electromagnetic potential, i.e., Aμ ¼ 0. This case occurs in
a 1þ 1-dimensional spacetime with curvature: Every
1þ 1-dimensional spacetime is conformally flat; i.e., its
metric can be written as

ds2 ¼ ℧2ðt; xÞðdt2 − dx2Þ: ð57Þ

Writing down the Dirac equation in such a spacetime
reveals that it is equivalent to the Dirac equation in flat
spacetime but with a spacetime-dependent mass mðt; xÞ ¼
℧ðt; xÞm0 (see, e.g., [38] for details).
In that case, the eikonal equation (28) is considerably

simpler:

ημνð∂μS�Þð∂νS�Þ ¼ m2ðt; xÞ: ð58Þ

We may write the two independent solutions Sþ and S−
using two different functions R and S by splitting S� into a
symmetric and an antisymmetric part,

S� ¼ R� S: ð59Þ

The inverse transformation is given by

R ¼ 1

2
ðSþ þ S−Þ; S ¼ 1

2
ðSþ − S−Þ: ð60Þ

When the mass is constant, the solutions S� ¼ ∓ϵptþ px
correspond to plane-wave solutions. In that case, R ¼ px
and S ¼ −ϵpt. Thus, the case p ¼ 0 is singular in the sense
that R vanishes identically. We avoid this case as this leads
to problems when using R and S as coordinate trans-
formations (see following subsection).
Using the above definition (60) of R and S in the eikonal

equation and computing the sum and difference of the two
equations, we find

m2 ¼ ð∂tRÞ2 − ð∂xRÞ2 þ ð∂tSÞ2 − ð∂xSÞ2;
0 ¼ ð∂tRÞð∂tSÞ − ð∂xRÞð∂xSÞ: ð61Þ

We solve the latter equation for ∂tR and obtain

∂tR ¼ ð∂xRÞ
∂xS
∂tS

¼ ∂xR
∂tS

∂xS ¼ λ∂xS; ð62Þ

where we have introduced the abbreviation λ which will be
more convenient later on.
Inserting this into the first equation in (61) we get

λ2 ¼ 1 −
m2

ð∂tSÞ2 − ð∂xSÞ2
: ð63Þ

Finally, the coefficients in the equations for α and β are

Π�
μ ¼ ∂μR� ∂μS;

N� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðm ∓ ∂tR − ∂tSÞ

p ;

κμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p

m
εμν∂νS: ð64Þ

A. Coordinate transformation

Somewhat similar to the method of characteristics
mentioned in the previous section, we want to introduce
new coordinates which simplify the evolution equa-
tions (41) for the Bogoliubov coefficients. The rapidly
oscillating exponential contains the difference of the phases
S ¼ ðSþ − S−Þ=2, and hence we choose one coordinate
(the new time coordinate) in this direction. In order to
have the same dimension as time, we define the new time
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coordinate s via s ¼ Sðt; xÞ=m0 where m0 ¼ limt→−∞m is
the asymptotic value of themass. To simplify scalar products,
the new spatial coordinate r should be locally orthogonal to s.
Inspecting the equations above, we find that this is auto-
matically satisfied if we define r ¼ Rðt; xÞ=m0.
Then we have

∂sS ¼ m0; ∂rS ¼ 0; ∂sR ¼ 0; ∂rR ¼ m0

ð65Þ

and thus

Π�
s ¼ �m0; Π�

r ¼ m0: ð66Þ

The components of the inverse metric tensor in r − s
coordinates are then given by

gss ¼ ð∂tsÞ2 − ð∂xsÞ2 ¼
1

1 − λ2

�
m
m0

�
2

;

grr ¼ ð∂trÞ2 − ð∂xrÞ2 ¼ −
λ2

1 − λ2

�
m
m0

�
2

;

grs ¼ gsr ¼ ð∂tsÞð∂trÞ − ð∂xsÞð∂xrÞ ¼ 0; ð67Þ

where we see explicitly that the coordinates r and s are
indeed locally orthogonal.
Finally, the components of the Levi-Civita tensor are

εss ¼ εrr ¼ 0; εsr ¼ −εrs ¼ λ

1 − λ2

�
m
m0

�
2

: ð68Þ

Additionally, we need to introduce the covariant derivative
∇μvν ¼ ∂μvν − Γλ

μνvλ where Γλ
μν are the Christoffel sym-

bols of the second kind. The relevant derivatives that are
needed in Eqs. (41) for α and β are

∇μΠ�
s ¼ ∂μΠ�

s|fflffl{zfflffl}
¼�∂μm0¼0

−Γν
μsΠ�

ν ¼−m0ð�Γs
μsþΓr

μsÞ;

∇μΠ�
r ¼ ∂μΠ�

r|fflffl{zfflffl}
¼∂μm0¼0

−Γν
μrΠ�

ν ¼−m0ð�Γs
μrþΓr

μrÞ: ð69Þ

Furthermore, we rescale α and β according to

α ¼ α̃
ffiffiffiffiffiffi
λm

p
; β ¼ β̃

ffiffiffiffiffiffi
λm

p
: ð70Þ

Again, we assume nonvanishing p ≠ 0 as this would be
singular for p ¼ 0 because λ ∝ p. Finally, after several
manipulations and simplifications, we get, as equations for
α and β,

∂sα̃ − λ2∂rα̃ − λ2α̃∂r ln λ

¼ −ie−2iSλ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p �
∂rβ̃ −

1

2
β̃χβ

�
;

∂sβ̃ þ λ2∂rβ̃ þ λ2β̃∂r ln λ

¼ ie2iSλ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p �
∂rα̃ −

1

2
α̃χα

�
ð71Þ

with the abbreviations

χβ ¼
1

1 − λ2
∂s ln λ − 2∂r lnm −

1

1 − λ2
∂r ln λ;

χα ¼
1

1 − λ2
∂s ln λ −

1 − 2λ2

1 − λ2
∂r ln λ: ð72Þ

Equations (71) are still exact, but they have several
advantages in comparison to the original Dirac equation (1).
First, as in the purely time-dependent case, the rapidly
oscillating phase e�2iS is a function of the new time
coordinate s only. Thus, they might also be advantageous
for numerical simulations, especially when the transforma-
tion from ðx; tÞ to ðr; sÞ coordinates can be implemented
efficiently. Second, if λ is small enough (see below) such
that we may neglect terms of order λ2, Eqs. (71) can be
approximated by

∂sα̃ ¼ −ie−2iSλ
�
∂rβ̃ −

1

2
β̃χβ

�
þOðλ2Þ;

∂sβ̃ ¼ ie2iSλ

�
∂rα̃ −

1

2
α̃χα

�
þOðλ2Þ: ð73Þ

Third, in the relevant case of α ≫ β, we see that α̃ does not
evolve with time s but stays nearly constant, α̃ ¼ α̃ðrÞ,
which fits the picture of the characteristics. This suggests a
wave packet αðrÞeim0rþim0s moving along curves of con-
stant r (i.e., in the s direction) whose shape is given by αðrÞ.
Going back to Cartesian coordinates t and x, this corre-
sponds to a wave packet traveling at varying speeds, with
the form of the wave packet changing over time (i.e.,
becoming wider or narrower). Then, we may solve the
evolution equation for β by integrating over s for fixed
values of r. For each value of r, we then have the same
situation as in the purely time-dependent case; i.e., the pair-
creation exponent will be determined by the complex value
of S at the first relevant singularity in the complex s plane.
Note that this requires rewriting all functions of t and x as

functions of s and r. Then, for all fixed (real) values of r,
one should analytically continue in s and find the singu-
larities in the complex s plane. Since this procedure can
only be applied fully analytically to special cases, we
develop a suitable approximation scheme based on weak
spatial dependencies in the following.
Another approach that could be considered is an inverse

one (see also [51]): If solutions R and S are given, one can
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calculate the associated mass m from Eqs. (61). These
solutions could be obtained by choosing S such that R can
be calculated easily from (61).

VII. WEAKLY SPACE-DEPENDENT MASS

Consider a spacetime-dependent mass where the space
dependence is much weaker than the time dependence, i.e.,
m ¼ mðt; εxÞ ¼ mðt; ξÞ with ε ≪ 1. As before, we use the
initial condition S�ðtin → −∞; xÞ ¼ px ¼ pξ=ε. We can
then expand the solutions of the eikonal equation (61) in a
power series for small ε,

R ¼ 1

ε
R0 þ R1 þ εR2 þ ε2R3 þ � � � ;

S ¼ S0 þ εS1 þ ε2S2 þ � � � ð74Þ

where Rn and Sn, n ¼ 0; 1; 2;…, are functions of t and ξ.
Because only squares of the derivatives of R and S appear
in (61), every second term in the expansions of R and S
vanishes, i.e., R2nþ1 ¼ S2nþ1 ¼ 0, n ¼ 0; 1; 2;…. To low-
est order, we find

R0 ¼ pξ; S0 ¼ −
Z

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
: ð75Þ

These are exactly the same expressions as in the purely
time-dependent case, with the only change being that the
mass m now also depends on x (or ξ). The next non-
vanishing terms are given by

∂tR2 ¼
ð∂ξR0Þð∂ξS0Þ

∂tS0
;

∂tS2 ¼
1

2

ð∂ξS0Þ2
∂tS0

þ ð∂ξR0Þ
∂tS0

�
∂ξR2 −

1

2

∂ξR0

ð∂tS0Þ2
�
: ð76Þ

To simplify this further we assume that p ¼ Oðε2Þ, i.e.,
p ¼ ε2p̃ where p̃ ¼ Oð1Þ. Note that our WKB approxi-
mation is based on the assumption that the temporal
oscillations of expfiS�g are fast (of order m), and the
spatial variation (and thus the momentum p) can be small.
In fact, pair creation is expected to be suppressed for large
momenta p. Inserting p ¼ Oðε2Þ, we obtain

R2 ¼ Oðε2Þ;

S2 ¼
1

2

Z
dt
ð∂ξS0Þ2
∂tS0

þOðε2Þ: ð77Þ

Using this approximation in (74) we get

R ¼ εp̃ξþOðε3Þ;

S ¼ −
Z

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
−
1

2
ε2
Z

dt
ð∂ξS0Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p þOðε4Þ:

ð78Þ

It should be noted that in the strict sense the square rootffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
should be expanded in a power series in ε as

well. However, we assume that keeping this expression as it
is will only enhance the accuracy of our approximation.
Inserting these expansions into the definition of λ, we find

λ ¼ ∂xR
∂tS

¼ ε
∂ξR
∂tS

¼ −ε2
p̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2
p þOðε4Þ: ð79Þ

Hence, if we only keep terms up to order ε2 in (71), the
equations for α and β are

∂sα̃ ¼ −ie−2iSλ0
�
∂rβ̃ −

1

2
β̃½∂s ln λ0 − ∂r lnðλ0m2Þ�

	
;

∂sβ̃ ¼ ie2iSλ0

�
∂rα̃ −

1

2
α̃½∂s ln λ0 − ∂r ln λ0�

	
ð80Þ

where λ0 ¼ −p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
is the leading-order term of λ.

Again assuming the dominance of the positive frequency
part α ≫ β (i.e., that only a few pairs are created), we find
α̃ ≈ α̃ðrÞ. Then β̃out can be obtained from the second
equation in (80) by integrating over all s. While performing
that integral the other coordinate r ¼ px=m0 þOðε3Þ has
to be held constant. Fortunately, if we only keep terms up
to order ε2, holding r constant is the same as holding x
constant.
The integral is dominated by the singularity closest to the

imaginary axis at s� ¼ Sðt�; xÞ. Typically, this will occur
where λ0 diverges, i.e., where

m2ðt�; xÞ þ p2 ¼ 0: ð81Þ

Here we assume that the function m2ðt�; xÞ itself does not
possess singularities which are even closer to the real axis.
(This could be the case for dynamically assisted pair
creation; see, e.g., [18,39,52].) In this case, they would
determine t�.
Thus, we expect βout to behave like

βoutðxÞ ∝ e2iSðt�;xÞ: ð82Þ

The density of produced pairs will then be [see (A18)]

jβoutðxÞj2 ∝ e−2ℑSðt�;xÞ: ð83Þ

JOHANNES OERTEL and RALF SCHÜTZHOLD PHYS. REV. D 99, 125014 (2019)

125014-10



In complete analogy to the purely time-dependent case, we
do not expect this method to yield the correct prefactor due
to the approximations made.

A. Example: Hyperbolic secant pulse

As an example, for an only weakly space-dependent
mass, we consider

mðt; ξÞ ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
fðωtÞgðωξÞ

γ

�
2

s
ð84Þ

which is similar to (18) but with an additional space-
dependent function gðχÞ. In complete analogy to Eq. (18),
we assume ω ≪ m0 and sufficiently small γ in order to be
in the WKB regime; the limit of large γ corresponds to the
perturbative regime.
We again use fðτÞ ¼ sechτ. Solutions to (81) here are the

same as in the time-dependent case (25),

τ� ¼ arcosh

�
� i
γ̃

�
¼ ln

"
1

jγ̃j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
1

γ̃2

�s #
− i

π

2
ð85Þ

with the only difference being that now

γ̃ ¼ γ

gðωξÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
p
m0

�
2

s
ð86Þ

depends on ξ (or, equivalently, x). Comparing S0 from (75)
with φp from the time-dependent case (20), we see that they
are equal up to an overall sign, i.e., S0 ¼ −φp, and thus the
lowest-order contribution to the exponent of the number of
produced pairs

−4ℑS0ðt�; xÞ ¼ −2π
m0

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
p
m0

�
2

s
ð87Þ

is exactly the same as in the time-dependent case. For the
next-order contributions we have to calculate

−4ℑS2ðt�; xÞ ¼ −2ℑ
Z

t�

−∞
dt
ð∂ξS0Þ2
∂tS0

¼ −π
m0

ω

½g0ðεωxÞ�2
jgðεωxÞj

1

γ
hðγ̃Þ ð88Þ

with the dimensionless function h depending on γ̃ only,

hðγ̃Þ ¼ ℜ
Z

1

0

du

�
arctan

�
1
jγ̃j

cosðπu=2Þ−i
ffiffiffiffiffiffiffiffi
1þγ̃2

p
sinðπu=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þγ̃2=2Þ½1þcosðπuÞ�−i
ffiffiffiffiffiffiffiffi
1þγ̃2

p
sinðπuÞ

p �
þ arctanð 1jγ̃jÞ

	
2

jγ̃j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

cosðπuÞþγ̃2½1þcosðπuÞ�=2−i
ffiffiffiffiffiffiffiffi
1þγ̃2

p
sinðπuÞ

q : ð89Þ

Note that because γ̃ ¼ γ̃ðξ; pÞ this still depends on the
momentum p and the spatial coordinate ξ. This integral
cannot be solved exactly in terms of elementary functions,
but we may obtain the asymptotics. If we expand hðγ̃Þ in a
series for small γ̃, we find

hðγ̃Þ ¼ 1

γ̃
½π2 þOðγ̃Þ�: ð90Þ

For large γ̃ ≫ 1, the integrand (89) decays with 4=γ̃−3.
Note, however, that this limit corresponds to the perturba-
tive regime, where the WKB eventually breaks down.
To test this behavior, we calculate the function hðγ̃Þ
numerically (see Fig. 5).
Because hðγ̃Þ > 0 for all values of γ̃, the next-order

contribution always decreases the pair-creation exponent;
i.e., its absolute value increases, thus reducing the number
of produced pairs. This is qualitatively consistent with the
numerical results from [7] using the worldline formalism.
There it was found that the locally constant field approxi-
mation overestimates the true pair production probability, at
least in the case of a Sauter potential.

Consequently, we see that, to this order of approxima-
tion, the density of produced pairs will be at its maximum
where g0ðωξÞ vanishes. Thus, both minima and maxima of
the pulse may give significant contributions to the number

FIG. 5. Log-log plot of the numerically calculated function hðγ̃Þ
as given in (89). For small γ ≪ 1, hðγ̃Þ approaches π2=γ̃, whereas
for large γ ≫ 1 it behaves like 4=γ̃3.
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of produced pairs (compare [7]) as both are saddle points of
the spatial integral in (A18). However, the exact contribu-
tion depends on the prefactor in βoutðxÞ which we have not
calculated here.
Qualitatively, the momentum dependence of the total

number NðpÞ of produced pairs will be the same as in the
purely time-dependent case, i.e., quadratically NðpÞ ∼ p2

for small p and exponentially suppressed for large p. The
main effect of the spatial dependence of mðt; xÞ will be an
overall reduction of the total amount of NðpÞ, due to the
reduced pair-creation volume or length and the correction
(88) to the exponent.

B. Higher momenta

After Eq. (76), we used the low-momentum approxima-
tion p ¼ Oðε2Þ in order to simplify the subsequent
expressions. This was sufficient for calculating the low-
est-order correction (88) to the pair-creation exponent
which shows that the spatial dependence tends to decrease
the pair-creation probability. However, as the mass varies
on length scales on the orderOð1=εÞ, one might expect that
further interesting effects occur on momentum scales of the
order p ¼ OðεÞ. Thus, let us briefly discuss this case.
According to Eq. (76), R2 can no longer be neglected,

∂tR2 ¼
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2
p Z

dt
∂ξmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p ; ð91Þ

which implies that the coordinates R and x are no longer
equivalent. This complicates the analytical continuation
because fixed and real values of R do not correspond to
fixed and real values of x (for complex t).
Furthermore, λ is now less suppressed, λ ¼ OðεÞ, which

implies that reaching the desired accuracy of Oðε2Þ, one
should keep the quadratic terms Oðλ2Þ in the evolution
equations (71), which adds further complications. Of
course, these more complicated equations can also be
solved within a consistent expansion in ε, but the resulting
expressions will be much more involved than those
presented here.
For very large momenta p, on the other hand, one would

expect that the results simplify again because the locally
homogeneous field approximation along the particle’s
worldline should become a good approximation.

VIII. CONCLUSIONS & OUTLOOK

Calculating the creation of particle pairs by truly
spacetime-dependent external fields (such as gravitational
or electromagnetic fields) in the nonperturbative regime is a
very challenging task. For purely time-dependent fields, a
very powerful method to estimate the pair-creation expo-
nent is the WKB approximation. In this work, we propose
a generalization of this approach to truly spacetime-
dependent background fields, which is based on solutions

of the relativistic eikonal equation (28). For fields that only
depend on either time or a spatial coordinate, our method
reproduces the known results (see Sec. IV).
One of the first obstacles we encounter is the problem of

caustics. They indicate that the eikonal equation (28) in
truly spacetime-dependent background fields does not have
globally differentiable solutions in general, in contrast to
the purely time-dependent case. However, if the spatial
dependence is sufficiently weak compared to the temporal
variation of the background, these caustics are well
separated from the spacetime region of particle creation
and thus do not spoil our approach (see Sec. V).
Then, via a transformation to adapted coordinates r and

s, the Dirac equation in the presence of a spacetime-
dependent massmðt; xÞ can be mapped exactly to Eqs. (71)
for the Bogoliubov coefficients. These equations have
several advantages and could also be suitable for improved
numerical simulation schemes. In the low-momentum
approximation λ ≪ 1, they simplify to (73). Then, via
the usual assumption that the positive frequency part
dominates, α ≫ β, we may estimate the Bogoliubov
coefficient β associated with pair creation via a simple
integral over the new time coordinate s in complete analogy
to the purely time-dependent case. Thus, as in the purely
time-dependent case, the pair-creation exponent is deter-
mined by the first singularity in the complex s plane.
Finally, consistent with our assumption to avoid caustics,

we consider the case in which the spatial dependence is
much weaker than the temporal variation and employ an
expansion in terms of the relative strength ε of the spatial
dependence in Sec. VII. To leading order, we obtain a result
which is analogous to the locally constant field approxi-
mation: At each point x in space, we simply have to
integrate the evolution equation for βðt; xÞ over time—in
complete analogy to the purely time-dependent case (as if
we had a spatially homogeneous background). In analogy
to the locally constant field approximation, this leading
order could be referred to as a locally homogeneous field
approximation.
Calculating the next-to-leading order correction (88) to

the pair-creation exponent (for our example), we find that
the spatial dependence tends to decrease the pair-creation
probability—which is qualitatively consistent with the
behavior for the Sauter-Schwinger effect in an inhomo-
geneous electric field (see, e.g., [20]). Note that this next-
to-leading order correction vanishes at maxima and minima
of the pulse, where g0ðΩξÞ is zero.
We expect that other field configurations, where the

dependence on one spacetime coordinate is weak, can be
treated similarly (e.g., tunneling through a weakly time-
dependent barrier or a light-front field pulse depending on
xþ plus a pulse only weakly dependent on x−). In the
presence of an electromagnetic field Aμ, one formally
obtains the same equations (41) for α and β, but the
subsequent steps such as the transformation to new
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coordinates r and s are more involved. It is still possible to
use S=m0 and R=m0 as coordinates, but they are not locally
orthogonal anymore. Alternatively, one can obtain the
coordinate s ¼ S=m0 in a similar way as before and then
construct another locally orthogonal coordinate, but the
equations for the Bogoliubov coefficients α and β become
more sophisticated nevertheless [53]. However, the main
strategy should also be applicable in this case.
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APPENDIX A: PAIR PRODUCTION

We give the relevant expressions for calculating the
number of produced pairs from the solutions of (41); see
also [54,55]. Assuming that any field is switched off
initially (i.e., for t → −∞) and finally (i.e., for t → ∞),
the fermionic field operator Ψ̂ can be expanded in terms of
one of two basis systems fψ�

inðp; t; xÞg or fψ�
outðp; t; xÞg,

Ψ̂ ¼
Z

dp
ffiffiffiffiffiffiffiffiffiffi
min

2πϵinp

r
½âinðpÞψþ

inðp; t; xÞ þ b̂†inðpÞψ−
inðp; t; xÞ�

¼
Z

dp
ffiffiffiffiffiffiffiffiffiffiffiffi
mout

2πϵoutp

r
½âoutðpÞψþ

outðp; t; xÞ

þ b̂†outðpÞψ−
outðp; t; xÞ�; ðA1Þ

where

ϵinp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

in þ ðpþ qAin
1 Þ2

q
;

ϵoutp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

out þ ðpþ qAout
1 Þ2

q
ðA2Þ

and âinðjÞ, b̂inðjÞ and âoutðjÞ, b̂outðjÞ are the initial and final
electron and positron annihilation operators, respectively.
The quantities min and mout are the values of the initial
and final mass, respectively, and similarly for Ain

1 and Aout
1 .

The functions fψ�
inðp; t; xÞg correspond to plane-wave

solutions for t → −∞, while the functions fψ�
outðp; t; xÞg

correspond to plane-wave solutions for t → ∞; the super-
scripts þ and − denote positive and negative energy,
respectively. These functions are complete,

X
κ

Z
dp

min

2πϵinp
ψκ
inðp; t; xÞðψκ

inÞ†ðp; t; x0Þ ¼ δðx − x0Þ;
X
κ

Z
dp

mout

2πϵoutp
ψκ
outðp; t; xÞðψκ

outÞ†ðp; t; x0Þ ¼ δðx − x0Þ;

ðA3Þ

and orthonormal,

ðψκ
inðpÞ;ψλ

inðp0ÞÞ ¼ 2π
ϵinp
min

δκλδðp − p0Þ;

ðψκ
outðpÞ;ψλ

outðp0ÞÞ ¼ 2π
ϵoutp

mout
δκλδðp − p0Þ; ðA4Þ

where ð·; ·Þ is the usual inner product defined as

ðϕ;ψÞ ¼
Z

dxϕ†ðt; xÞψðt; xÞ: ðA5Þ

Observe that

âinðpÞ ¼
ffiffiffiffiffiffiffiffiffiffi
min

2πϵinp

r
ðψþ

inðpÞ; Ψ̂Þ;

b̂†inðpÞ ¼
ffiffiffiffiffiffiffiffiffiffi
min

2πϵinp

r
ðψ−

inðpÞ; Ψ̂Þ;

âoutðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mout

2πϵoutp

r
ðψþ

outðpÞ; Ψ̂Þ;

b̂†outðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mout

2πϵoutp

r
ðψ−

outðpÞ; Ψ̂Þ: ðA6Þ

Then by using the other respective expansion of the field
operator, one finds the Bogoliubov transformation between
the in- and out-operators,

âinðpÞ ¼
Z

dp0½Bþþ
pp0 âoutðp0Þ þ Bþ−

pp0 b̂†outðp0Þ�;

b̂†inðpÞ ¼
Z

dp0½B−þ
pp0 âoutðp0Þ þ B−−

pp0 b̂†outðp0Þ�;

âoutðpÞ ¼
Z

dp0½ðBþþ
p0pÞ�âinðp0Þ þ ðB−þ

p0pÞ�b̂†inðp0Þ�;

b̂†outðpÞ ¼
Z

dp0½ðBþ−
p0pÞ�âinðp0Þ þ ðB−−

p0pÞ�b̂†inðp0Þ�; ðA7Þ

with the Bogoliubov coefficients

Bκλ
pp0 ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minmout

ϵinp ϵ
out
p0

s
ðψκ

inðpÞ;ψλ
outðp0ÞÞ: ðA8Þ

Thus, the number of produced positrons with momentum
p is

NeþðpÞ ¼ h0injb̂†outðpÞb̂outðpÞj0ini ¼
Z

dp0jBþ−
p0pj2

¼
Z

dp0 minmout

ð2πÞ2ϵinp0ϵoutp
jðψþ

inðp0Þ;ψ−
outðpÞÞj2: ðA9Þ

Let us assume that we calculated a solution to (41) with the
boundary conditions limt→−∞α ¼ 1 and limt→−∞β ¼ 0,
i.e., only positive energy initially. Additionally,
limt→−∞S� ¼ px. Then we can actually use the wave
function in (34) as ψþ

in. Asymptotically, we thus find
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ψþ
inðp; t; xÞ !t→∞

αoutðp; xÞuoutþ ðp; xÞeiSoutþ ðp;xÞ

þ βoutðp; xÞvoutþ ðp; xÞeiSout− ðp;xÞ ðA10Þ

where the quantities designated with “out” are the values of
their respective time-dependent quantities at t → ∞.
Similarly we have

ψ−
outðp; t; xÞ !t→∞

ṽoutþ ðpÞeipx: ðA11Þ

The spinor ṽoutþ ðpÞ is obtained from a spinor vþ at t → ∞
where solutions S̃� with the boundary condition
limt→∞S̃� ¼ px have been used.
Because the inner product (A5) is time independent, we

may evaluate the one in (A9) at any time; e.g., for t → ∞
we find

ðψþ
inðp0Þ;ψ−

outðpÞÞ

¼
Z

dxfα�outðp0; xÞðuoutþ Þ†ðp0; xÞṽoutþ ðpÞe−i½Soutþ ðp0;xÞ−px�

þ βout
�ðp0; xÞðvoutþ Þ†ðp0; xÞṽoutþ ðpÞe−i½Sout− ðp0;xÞ−px�g:

ðA12Þ

In the time-dependent case, ∂xα ¼ ∂xβ ¼ 0 and the
canonical momentum p is conserved, i.e., Sout� ðp; xÞ ¼
px ∓ φðpÞ where φðpÞ is independent of x. Thus, ṽoutþ ¼
voutþ is independent of x, too, and using the identities

ðuoutþ Þ†ðpÞvoutþ ðpÞ ¼ 0; ðvoutþ Þ†ðpÞvoutþ ðpÞ ¼ ϵoutp

mout
;

ðA13Þ

we find

ðψþ
inðp0Þ;ψ−

outðpÞÞ ¼
2πϵoutp

mout
βout

�ðpÞδðp0 − pÞ ðA14Þ

and therefore

Bþ−
p0p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

mout

ϵoutp

ϵinp

s
β�outðpÞδðp0 − pÞ: ðA15Þ

Similarly we can calculate

Bþþ
p0p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min

mout

ϵoutp

ϵinp

s
α�outðpÞδðp0 − pÞ: ðA16Þ

Thus, in the purely time-dependent case the coefficients
αout and βout essentially are the Bogoliubov coefficients,
and we get, for the number of produced pairs,

NeþðpÞ ¼
min

mout

ϵoutp

ϵinp
jβoutðpÞj2δð0Þ ðA17Þ

where the divergent factor δð0Þ is due to the infinite extent
of the field.
In the spacetime-dependent case, the integral in (A12) is

far more difficult to solve, as most factors depend on x.
Still, for only weakly space-dependent fields as in Sec. VII,
we assume that the dominant contribution comes from a
term similar to the one in the time-dependent case,

NeþðpÞ ≈
min

mout

ϵoutp

ϵinp

Z
dxjβoutðp; xÞj2 ðA18Þ

which essentially is just the same expression as in the time-
dependent case but with δð0Þ replaced with a spatial
integral. This is only a good approximation if scattering
to other modes is low.

APPENDIX B: ESTIMATION OF CAUSTICS

Using the method of characteristics, a first-order partial
differential equation may be turned into a set of first-order
ordinary differential equations (see, e.g., [49] for a math-
ematical derivation of the method). In our case, we can also
use the following equivalent set of ordinary differential
equations:

̈tðτÞ ¼ 2

m2
0

∂tm2;

ẍðτÞ ¼ −
2

m2
0

∂xm2;

_zðτÞ ¼ 2

m0

m2 ¼ m0

2
ð_t2 − _x2Þ; ðB1Þ

where zðτÞ ¼ SðtðτÞ; xðτÞÞ. We use the boundary condition
that at t ¼ t0 the solution S is a plane wave with positive
energy which translates to the initial conditions

tðτ0Þ ¼ t0; _tðτ0Þ ¼ −2
ϵp
m0

;

xðτ0Þ ¼ x0; _xðτ0Þ ¼ −2
p
m0

;

zðτ0Þ ¼ −ωt0 þ px0: ðB2Þ

These equations were solved numerically to obtain the
characteristic curves in Fig. 4. The parameter τ labels the
points along a particular characteristic curve that is speci-
fied by the starting position x0.
We estimate the position of the intersection of two

neighboring curves analytically for p ¼ 0. For times prior
to the pulse in the mass (where the mass is constant), the
(projected) characteristic curves are parallel to each other,
and their parametrization is given by
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t ¼ t0 − 2
ϵp
m0

τ; x ¼ x0 − 2
p
m0

τ: ðB3Þ

The curves are deflected when they reach the region of the
pulse. This deflection is manifest in a change of a curve’s
slope dx=dt after passing the region of nonconstant mass.
The above equations imply that the change of the slope with
the parameter τ is

d
dτ

dx
dt

¼ d
dτ

_x
_t
¼ −

2

_t
∂xm2

m2
0

−
2_x
_t2

∂tm2

m2
0

: ðB4Þ

To approximate the change in the slope, we use the initial
form of the characteristic curves (B3) in (B4). We expect
this to be a good approximation if m is only weakly space
dependent; i.e., the timescale on which the value of the
mass changes is much smaller than its length scale. For
p ¼ 0 this approximation yields

d
dτ

dx
dt

≈
1

m2
0

∂xm2ðt0 − 2τ; x0Þ: ðB5Þ

Thus, the slope after passing the region of nonconstant
mass is approximately

dx
dt






t→∞

≈ −
1

2m2
0

Z
∞

−∞
dt∂xm2ðt; x0Þ: ðB6Þ

Hence, a characteristic starting at x ¼ x0 will have the form

xafterðx0; tÞ ≈ x0 −
t

2m2
0

Z
∞

−∞
dt∂xm2ðt; x0Þ ðB7Þ

after passing the pulse. The intersection of this character-
istic and the one starting at x0 þ δ is at

t ¼ 2m2
0δR

∞
−∞ dt½∂xm2ðt; x0 þ δÞ − ∂xm2ðt; x0Þ�

: ðB8Þ

For δ → 0 this gives the intersection of two neighboring
curves

t ¼ 2m2
0R

∞
−∞ dt∂2

xm2ðt; x0Þ
: ðB9Þ

Consequently, the focal point or onset of the caustic surface
is where this is at its minimum with respect to x0. For a
weakly space-dependent mass of the form (84), we get

1

2m2
0

Z
∞

−∞
dt∂2

xm2ðt; x0Þ

¼ ε2ω2

γ2ω
fgðεωx0Þg00ðεωx0Þ þ ½g0ðεωx0Þ�2g

Z
∞

−∞
dτ½fðτÞ�2

ðB10Þ

which immediately leads to the proportionality given
in (55). For fðτÞ ¼ sechτ and gðχÞ ¼ sechχ we find the
minimum to be

tf ¼ 3

2

γ2ω

ε2ω2
: ðB11Þ
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